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Rapakivi granite areas in Finland and NW Russia. Modified after Lehtinen et al. (1998).

The 1.646-1.615 Ga Wiborg Rapakivi Batholith (WRB) was generated by
anorogenic magmas that intruded into deeply eroded Svecofennian crust. WRB
covers a large part of the upper crust in the southeastern Fennoscandian shield, and
is very homogeneous, mainly consisting of porphyritic rapakivi granites and to a
very small extent of mafic rocks such as gabbros and anorthosites. Wide-angle
deep seismic sounding (DSS) profiles BALTIC (Luosto et al. 1990, Janik, 2010),
KOKKY (Tiira et al. 2021) and SOFIC (Tiira et al. submitted) cross the WRB.

Analysis of the DSS profiles has revealed that the rapakivi block is shallow, no
more than 10 km. It is also seismically active despite the general rarity of

earthquakes in Finland. The presence of surface waves in earthquake waveforms of
the WRB indicates that earthquakes are limited to the upper 5 km of the crust (Uski

et al. 2006).
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Seismic stations and deep seismic sounding profiles in southeastern Finland. Ends of
KOKKY and SOFIC profiles in Russia are also shown.
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2D seismic model of P-wave velocity and distribution of Vp/Vs ratio from SOFIC deep
seismic sounding profile (Tiira et al. submitted). The entire profile, beginning from the
Turku archipelago, is visible. Confirmed crustal boundaries are displayed with solid white
lines. Numbered triangles indicate shot numbers. Crossing points of FENNIA, BALTIC,
KOKKY and FIREZ2a profiles are also shown. HVL.C means the high velocity lower crust.
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Heat flow measurements from the WRB are rare. The most
reliable reading is from a 200 m borehole in Loviisa, southern
coast of Finland (g = 57 mWm™ raw value, ¢ = 62 mWm™ with
paleoclimatic correction; Kukkonen, 1989). Both values
exceed the Fennoscandian average (49 mWm™; Veikkolainen
et al. 2017) interpolated from paleoclimatically corrected data.

Heat production in the WRB is better known than heat flow.
Lithogeochemical data from 93 rock outcrop samples from the
Finnish side of the WRB, measured at the Geological Survey
of Finland, provide an average heat production of 3.6 + 1.2
utWm™. This is much more than the Finnish average
1.4+1.4pWm™ and also features sharp contrasts to the
neighboring Finnish areas (Veikkolainen and Kukkonen,
2019). No data from the Russian side are available.

The variation of heat production with depth greatly affects the
shape of geotherms. However, direct measurements are only
available for surface rocks. In WRB the dichotomy of felsic
rocks above mafic ones, i.e. bimodal magmatism, supports the
use of a layer cake model instead of a model with
exponentially decreasing heat production.

In WRB, DSS profiles show layer boundaries in various
seismic cross-sections. In a layer cake model, this information
can be supplemented by using different proportions of rock
types with known heat production values. In our layer cake
model, we applied a decreasing thermal conductivity by
temperature in three layers.

For thermal conductivity A, we used the temperature
dependence

= o {1/ (1+BT) + o(T + 2?3,15}{)3]

where T is temperature [°C], A (2.9 Wm™K™) is thermal
conductivity at the reference temperature of 25 °C and b

(0.0008 K1) is a preselected empirical parameter, which
depends on the lithology but is generally considered to be near
the value 0.001 in crust. The factor c, representing radiative heat
transfer, can be considered zero in typical crustal temperatures.
Using constant heat production H within each layer, but
temperature-dependent thermal conductivity, steady-state
temperature T at a depth of z can be solved:

T(z) = (1/b) {(1+5Tﬂ) exp{(%) (gﬂz_ Hj)] - 1}

In our calculation, yearly mean surface temperature T = 5 °C.
For the composition of the upper crust (0...10 km) we assumed
a mixture of rapakivi granites and gabbro-anorthosites with a
very strong granitic dominance. Using heat production H = 3.5
uWm™ means that 3.3% of the upper crust is gabbro-
anorthosites and the rest is rapakivi granites. For the middle
crust (10...30 km), we had the value H = 0.5 pWm™, and for the
lower crust (30...41 km) H = 0.3 pWm™ to account for the
increasing gabbro-anorthositic content of the crust.

The Fennoscandian shield is almost entirely at the same erosion
level. Therefore the Moho heat flow values (9...15 mWm™)
determined from mantle xenoliths in the eastern Finland

(Kukkonen and Peltonen, 1999; Kukkonen et al. 2003) are valid
for our model despite the anorogenic origin of WRB.

To meet the thermal conditions at layer boundaries and within
layers, we produced three geotherms with different surface heat
flow constraints. Heat flow values appear to be clearly above
the WRB value range in the heat flow map of Veikkolainen et
al. (2017) which included all heat flow determinations, also
poorly constrained ones. In the rapakivi area, those include the
heat flow determination from a shallow well in Elimaki

(Kukkonen et al. 1989).
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Earthquakes in WRB and adjacent areas until June
2022. Black ovals indicate most important
earthquake swarms. Rapakivi areas in
southeastern Finland are shown by pink color.

Research of seismicity of WRB date back to pre-
instrumental times. After the turn of the
millennium, the density of seismic station
network in southeastern Finland has allowed
detection of small earthquakes (local magnitude
ML<1). In addition to the Finnish National
Network stations, temporary project networks
have been established in the area.

A notable earthquake swarm took place in
Anjalankoski, south of Kouvola, in May 2003.
The largest event had Mr2.1. The two strongest
earthquakes in the WRB occurred during another
swarm in December 2011-January 2012. They
had ML3.0 and Mr2.9. The latest swarms
occurred in Koria in January 2021 (strongest
event Mr2.0), and in Miehikkald in May 2021
(strongest event ML1.6).

Earthquakes in the WRB are typically shallow
and laymen often mistake them for explosions.
Therefore they often arouse media attention.

In the WRB, thermal and seismotectonic
environment notably differs from that of the
other Fennoscandian areas. The seismogenic
zone does not cover the entire depth range of
rapakivi granites. Seismic cutoff temperature is
probably below 200 °C unlike the range of 300-
400 °C typically assigned for granitic lithology.
The rapakivi block has been highly fractured in
general and earthquakes may also take place in
horizontal faults within the rapakivi block.
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